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A Rigorous Bound on the Critical Exponent for the 
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The number of n-site lattice trees (up to translation) is believed to behave 
asymptotically as Cn-~ ", where 0 is a critical exponent dependent only on the 
dimension d of the lattice. We present a rigorous proof that 0/> ( d -  1 )/d for any 
d>~ 2. The method also applies to lattice animals, site animals, and two-dimen- 
sional self-avoiding polygons. We also prove that 0/> v when d= 2, where v is 
the exponent for the radius of gyration. 
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1. INTRODUCTION 

In  this paper  we cons ider  several k inds  of lattice objects:  trees, an imals ,  site 
an imals ,  and  self-avoiding polygons .  These objects  will be defined precisely 
at the b e g i n n i n g  of  Sect ion 2 (except for polygons ,  which are defined in 
Sect ion 3). 

These different objects  have a few things in c o m m o n .  F o r  definiteness,  
let Z a be the d -d imens iona l  hypercubic  lattice (d~> 2) a n d  let t ,  to be n u m -  
ber  of n-site trees in Z a up to t rans la t ion .  T h e n  it can  be p roven  r igorous ly  
that  there is a "g rowth  cons t an t "  2 ,  with 1 < 2, < c~, such that  

lim _ . t l / "=) . ,=sup  t]/" (1) 
n ~  r n~> 1 

This  follows from the supermul t ip l ica t ive  (or, after t ak ing  - l o g ,  sub-  
addi t ive)  ineqiaality 

t,,tm<~t,,+., for n , m > ~ l  (2) 
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Equation (2) is a consequence of the fact that any two trees may be (trans- 
lated and) joined by a single bond to form a larger tree with the property 
that the two original trees lie on opposite sides of a hyperplane xl = const 
(see Klein ~9~ for details). The actual scaling behavior of t,, is believed to be 

t,, ~ C , n - ~  (3) 

The same behavior is expected for other lattices; the constants C, and 2, 
should depend upon the lattice, but the critical exponent 0, is believed to 
depend only on the dimension d. Observe that the second equality of (1) 
immediately implies that 

0,~>0 (4) 

assuming that the scaling behavior (3) indeed holds. 
Everything in the preceding paragraph has a direct extension to 

animals and site animalsJ 8~ In our notation, we shall replace the t by a and 
s, respectively, so that the expected scaling behaviors are 

a,, ~ C, ,n  - r for animals (5) 

s .  ~ C . n - ~  for site animals (6) 

It is believed that trees, animals, and site animals are all in the same 
universality class I~j~ and in particular that 0 , = 0 , = 0 ,  in every dimension. 
Moreover, the exponent should depend only on the dimension and not on 
the actual lattice (as opposed to C, and 2,, for example). The values of the 
exponent 0 are believed to be as given in the following table: 

d 2 3 4 5 6 7 >/8 

0 1 3/2 1 .83  2.07 2.25 2.39 5/2 

The values for 2 and 3 dimensions come from the dimensional reduction 
calculation of Parisi and Sourlas ~t4~ and are believed to be exact. Mean- 
field behavior (with 0 = 5/2) is believed to occur for d >  8, with logarithmic 
corrections for d =  8. The values for 4, 5, 6, and 7 dimensions are derived 
from the exact (but nonrigorous) relation 0 =  I + ( d - 2 ) v ,  114j where v is 
the exponent for the diameter of an average tree or animal, via the Flory- 
type approximation v m 5 / 2 ( d + 2 ) .  16"t~ These values for 0, as well as the 
relation 0, = 0, = 0~., have been supported numerically. 121 

For self-avoiding polygons, the situation is slightly complicated 
because of the concatenation procedure (see Section 3.2 of ref. 13; see also 
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Section 3 below). Nevertheless, if q,, is the number of n-step self-avoiding 
polygons, then we have 

lim q],/"= 2,, = sup [q, , /(d-  1 )3 ~/" (7) 
t !  ~ ac ,  t l  >~ I 

and the conjectured scaling behavior is 
- -  O q  n q,, ".. Cqn 2q (8) 

For polygons, we implicitly restrict to even values of n everywhere, because 
there are no polygons of odd length in Z a. We note that the usual notation 
for self-avoiding polygons is /l instead of 2q and asiug-3 instead of -Oq. 
The hyperscaling relation 2-ets~.g=dv (which has not been proven 
rigorously) leads to the following values: 

d 2 3 ~>4 

Oq 5/2 2.76... l + d / 2  

See Madras and SladC TM for more discussion. 
The main result of the present paper is a rigorous proof of the lower 

bound 

d - I  
0>~ (9) 

d 

for each of the models described above (except that we only consider d =  2 
for polygons). Since the critical exponent has not been rigorously proven 
to exist in general, we formulate the result more precisely in the following 
two theorems. (Precise definitions of all terms are given at the beginnings 
of the next two sections.) 

T h e o r e m  1.1. Let d~>2. For the lattice Z a, or more generally for 
any d-dimensional homogeneous lattice, we have the following bounds for 
the number of trees, animals, and site animals, respectively: 

1 
(i) t,,<~d2~a_l)/dn-Ca-l)/a2' ~ forall n>~l 

1 
(ii) a,,<~d2(d_l)/an-(a-')/a2',i forall n~>l 

1 
(iii) s , , < ~ ~ n  -(a l)/a21'+z forall n~> 1 

T h e o r e m  1.2. Let q,, be the number of self-avoiding polygons (up 
to translation) on the square lattice Z 2. Then there exists a finite constant 
C such that 

q,, <~ Cn- ~/22" for all (even) n/> 1 - - q  
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A byproduct  of the proof  technique is the following bound,  valid in 
two dimensions for any of the models  consider above: 

O>>.v 

The critical exponent  v is the one governing the length scale of the tree (or 
animal or polygon).  A common  way to define v is that the mean square 
radius of gyrat ion of an n-site tree is asymptotical ly propor t ional  to n 2". 
[We say that  f (n)  is asymptotically proportional to g(n) if f(n)/g(n) 
converges to a finite nonzero constant.-] An alternative way is to say that  
the mean span is asymptotical ly propor t ional  to n", and this is the defini- 
tion that we shall use (see Section 4 for the precise definitions). 

T h e o r e m  1.3.  Let d = 2  for any of the models  considered in 
Theorems 1.1 or 1.2. If the mean span for the model  is asymptotical ly 
proport ional  to n", then there exists a (latt ice-dependent) constant  B ,  such 
that  

~< . . . . . . .  for all n l > l  * n -~v /3~,  .'/ A ,  

(Here �9 is one of t, a, s, or q, depending on the model under consideration.) 

To  conclude this section, we shall describe previous rigorous bounds 
on the exponent  0. As ment ioned at the beginning of this section, sub- 
additivity implies that  0,, 0a, and 0s are all nonnegative,  in the sense that  
t,,~<2',' for all n, etc. Ha ra  and Slade tS~ proved that  (3) and (5) hold 
with O, = 0a = ~ for Z a when d is sufficiently large. They also proved this 
for any d > 8 on a "spread-out"  lattice with sufficiently large range L. 
(A "spread-out"  lattice of range L has the points of Z d as its sites, and two 
distinct sites (x~ ..... Xd) and (y~ ..... Ya) are joined by a bond whenever 
I x i -  Y~I <~ L for every i = 1 ..... d.) It has also been proven that  0, and 0o are 
bounded above by ~ in every dimension, in the weaker sense that  

• n2t,,z">~const.(2?l-z) - m  as z y 2 , 1 ,  
n = l  

and also with t replaced by a (Bovier, Fr6hlich, and Glaus;  ~ Tasaki  and 
Hara ;  t~5~ Hara  and Sladet3~). This bound does not translate into a term- 
wise lower bound for t,, or a,,. The only termwise lower bound known 
in general d is C exp[-f(logn)2]2','<~t,, for some positive constants C 
and 6 (Janse van Rensburgl7)). 
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For self-avoiding polygons, subadditivity implies Oq>~O. Using 
methods very different from the present paper, Madras c12) proved that 
Oq >1 �89 in d =  2, but only at the level of generating functions: i.e., 

~ q,,z"<<.const.(2ql-Z) -1/2 as z.~,;tq 1, 
n =  1 

The same paper proved, in the same sense, that Oq/> 1 in d =  3 and Oq > 1 
for d/> 4. Hara  and Slade c4) proved that Oq >1 1 + d/2 for d >/5, again at the 
level of generating functions. (But see also Theorem 6.1.3 of ref. 13.) 
Finally, in general d, there are termwise lower bounds on q,, that imply 
Oq ~< d +  5 / f  another critical exponent exists (see ref. 13, Section 8.1). 

2. DEFINIT IONS A N D  THE PROOF OF T H E O R E M  1.1 

In this section, we define the basic objects of study and we give the 
complete proof of the main result for the case of trees in Z d. 

We will work on periodic d-dimensional lattices ~ with d~>2. We 
view ~ as an infinite graph, consisting of sites and bonds, that have been 
embedded in d-dimensional Euclidean space R d in a periodic manner. We 
write (x,  y )  to denote the bond whose endpoints are the sites x, y E R d. 
The edges are not directed (i.e., (x,  y )  = (y ,  x ) ) .  We always fix the origin 
0 to be one of the sites of ~ .  An important special case is the simple 
hypercubic lattice Z d, whose sites are the points (xl ..... Xd) ~ R d with integer 
coordinates, and whose bonds join pairs of sites that are unit distance 
apart. 

In this section, we shall only consider lattices with the following 
property: there is a finite set vcRd\{0}  such that ( x , y )  is a bond 
of _9 ~ if and only if x - y ~  V. A lattice with this property is said to be 
homogeneous. Then Z a is homogeneous, as are as the triangular, face- 
centered, and body-centered cubic lattices, as well as the "spread-out" 
lattices of Hara  and Slade. tS~ We shall also assume that ~ is truly d-dimen- 
sional, in the sense that V contains a basis of R a. In fact, by applying 
an invertible linear transformation to R d if necessary (which does not 
affect the number of animals, etc.), we can and shall assume that eiE V for 
i = 1 ..... d, where el ..... e d is the standard orthonormal basis of R d. 

An animal is a finite connected subgraph of the lattice ~ (in some 
other papers,.this is called a bond animal). A tree is an animal that has no 
cycles. A site animal is an animal with the property that if two sites of the 
animal are joined by a bond in the lattice, then that bond must belong to 
the animal. 

If G is a subgraph of &a, and if x is a vector in R d, then we define 
G + x  to be the translation of G by x: i.e., the graph whose sites are 
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{ z + x :  z is a site of G}, and whose bonds are { < y + x ,  z + x > :  < y , z >  is 
a bond of G}. 

For  each integer n t> 1, let s~,, be the set of all animals with n sites 
whose lexicographically smallest site is the origin. [We  say that (Xl ..... x a )  

is lexicographically smaller than (y~ ..... Ya)  if there exists a j such that  
x i = y i  for all i =  1 ..... j - 1  and x j < y j . ]  For  a homogeneous  lattice, if 3 is 
any animal with n sites, then there is a unique x e R a such that  3 -  x e d,, 
(in fact, x is the lexicographically smallest site of 3). Using 1"[ to denote 
cardinality, we define 

a,, := Id,,I ( n ~ l )  

This is "the number  of animals with n sites, up to translation." Similarly, 
we let ~ (respectively, 5~,,) be the set of all trees (respectively, site animals)  
with n sites whose lexicographically smallest site is the origin. We also 
define 

t,, := [~,,,1 and s,  := [5~,,1 (n ~> 1 ) 

as the number  of trees and site animals, respectively, with n sites, up to 
translation. 

For  x = ( x l  ..... Xd) e R d and i e  { 1,..., d}, let 

proj /(x)  = ( x ,  ..... x i _  , ,  x i +  1 ..... x a )  

be the projection of x onto the subspace of R d or thogonal  to the x i axis. 
Also, for an animal 3, let 

Proji(3) = {proji(x): x is a site of 3} 

Observe that if 3 has n sites, then IProji(3)[ ~<n. For  example,  if r o d  

is the line segment from 0 to (n - -1 ,  0,...), then I P r o j l ( r o d ) l  = 1, while 
IProjArod)l = n  for all if= 1. Also note that if n TM is an integer, and if the 
sites of 3 exactly fill a hypercube of side n TM, then IProj;(3)[ = n  l a -  l~/d for 
every i. The following inequality of  Loomis  and Whitney tI~ will be used 
below. 

Theorem 2.1. 
lattice. Then 

Let 3 be a graph with n sites in a d-dimensional 

d 

]-I IProj;(r)l  >~n a - '  
i = 1  
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Note that the theorem is simple to prove in d =  2, but much subtler for 
d > 2 .  One immediate consequence of this theorem and the arithmetic- 
geometric mean inequality is that 

IProji(r)l >~ n ca- I)/a (10) 
i = 1  

whenever z has n sites. Intuitively, this says that the average projection of 
a graph is at least as large as the average projection of a hypercube with 
the same number  of sites. 

The proof  of Theorem 1.1 for trees and animals is an immediate conse- 
quence of the following two lemmas and Eq. (1). 

L a m i n a  2.2.  Let &a be a homogeneous d-dimensional lattice. Then 
for every n >/1, 

t2,,>~dn(d-l)/dt 2 and az,,>~dn(d--I)/da~ (11) 

L e m m a  2.3.  Let 2 be a positive number  and let v~,v2 .... be a 
positive sequence such that 

lim v~,/"=2 (12) 
t # ~  o~3 

Also assume that there are numbers B > 0 and p >/0, and an integer k/> 0, 
such that 

v2,,+k>>.BnPv~ forevery n~> 1 (13) 

Then 

1 
v,, ~ < - -  2 "+k for every n>~l (14) 

"-~ B2Pn p 

Before we prove these two lemmas, we record the following notat ion 
and elementary lemma. If b is a bond of a graph G, then G\b  is the 
subgraph of G obtained by removing b from the set of bonds. 

l . e m m a  2.4.  Let G be a connected graph with 2n sites. Then there 
exists at most one bond b such that G\b  is a disconnected graph with two 
connected components  of exactly n sites each. 

Proof. Suppose that there were two such bonds, b I~ and b t2~. Let A 
and B be the two connected components  of G\b  c~. Without  loss of 
generality, assume that b c2~ belongs to A. Let x be the endpoint of b t~ that 
belongs to A. Then one component  of G\b  ~21 contains all of B as well as 
x, which is more than n sites. This is a contradiction. II 
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7" O" 

p r o j , ( x ) [ .  ~ J l 

i 
-]T 

T i Y"'~+"I 
I 

Fig. 1. The proof of Lemma 2.2 in the square lattice. Here i=  1. The lexicographically 
smallest sites of �9 and a are enclosed by boxes. The dashed line in ~ is the added bond 
(3,,),+el). 

Proof of Lernrna 2.2. Here is the basic idea behind the proof  in two 
dimensions (Fig. I). Let z and a be two n-site animals (or trees) in Z 2. 
Translate a vertically so that its lexicographically smallest site is on a 
horizontal line that intersects z. There are at least n t/'- choices for this line 
(if not, then replace z by its rotation by rr/2). Now we will just translate a 
horizontally. Starting with a far to the right of z, move it in the - e ~  direc- 
tion until just before it touches r. In this position, add a bond to join ~r to 

to get an animal (or tree) $ with 2n sites. By Lemma 2.4, we can deter- 
mine z, ~r, and the initial vertical translation unambiguously from $. This 
counting argument gives the desired result for d =  2. The same idea works 
for d/> 3, except that the initial "vertical" translation of a becomes a trans- 
lation of a so that its lexicographically smallest site lies on a "horizontal" 
line (in the el direction, say) that intersects z; there is one such line for 
every point of Proj,(z).  By the Loomis-Whi tney  theorem, there are at least 
ll(d-l)/d such lines (if not for z, then for some rotation of r). 

We now give the full proof for trees; the proof  for animals is virtually 
identical. Fix 17>_. I, fix i~ {1 ..... d}, and fix two trees z and a in f,,,. Recall 
that ei is the unit vector in the positive xi direction. For  each site x of z, 
let 

k(x )=max{keR:  (a + x +kei)n'c ~ ~ }  
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(The above intersection refers to the set of sites that are in both a + x + kei 
and 3.) Observe that (a + x +  kei)c~ 3 is empty  for all sufficiently large k, 
while it contains x for k = 0 .  Therefore k(x) is a well-defined finite 
nonnegative number.  Also observe that  if x and x '  are two sites of 3 with 
p ro j i (x )=pro j~(x ' ) ,  then x + k ( x )  e i=x '+k(x ' ) e~ .  Choose a site 
y ~ (a + x + k (x )e~)n  3 (if there is more  than one site in the intersection, 
then choose the lexicographieally smallest site). Let ~ be the animal con- 
sisting of the union of 3, ( a + x +  [ k ( x ) +  1] ei), and the bond ( y , y + e i ) .  

We need to show that  r as obtained in the above paragraph,  is 
in J_,,,. It is evident that ~ is a tree with 2n sites, so we only need to show 
that 0 is the lexicographically smallest site of ~O. We know that 0 is a site 
of ~b (since it is a site of 3), and that  it is lexicographically smaller than all 
of the sites of z. Suppose that z is a site of ~, that is not in z. Then z can 
be written y + x +  [ k ( x ) +  1] ei for some site y of a. We know that 0 
is lexicographically smaller than each of y, x, and [ k ( x ) +  1] e,- [-recall 
k(x)>_-0], and so 0 must be lexicographically smaller than their sum. 
Therefore 0 is lexicographically smaller than z. We conclude that  ~ is 
in ~_,,,. 

Now suppose that  we are given only the final tree ~. We claim that  we 
can determine 3, a, i, and proj ;(x)  unambiguously.  By Lemma  2.4, there is 
a unique bond b such that qs \b  consists of two components  of n sites each. 
Let u be the lexicographically smaller of the two endpoints  of b, and let v 
be the other endpoint.  Then v - u  = e~, so i is determined. Let ~b,, (respec- 
tively, ~v) be the component  of ~,\b that  contains u (respectively, v). Then 
~,, = z and Sv = (a + x +  [ k ( x ) + 1 ]  e3. So 3 is determined. Let z be the 
lexicographically smallest point of ~ , ;  then z = x +  [ k ( x ) +  1] e;. This 
allows us to determine both a ( = ~ b , , - z )  and proj i(x)  [ = p r o j i ( z ) ] .  Thus 
our claim has been proven. 

Now consider the set of all 
by the procedure of the first 
paragraph,  

possible ~b's in ~z,, that can be be formed 
paragraph.  By the claim of the third 

d 

number  of O's = ~ ~ [Proj,(3)l 
i =  1 r ,a~.Y-.  

d 

= ~ ~ IProj,(3)l t,, 
i =  I r e , ~ .  

~ dn~ [by (10)] 
r e g - n  

=dn (d- l'/at~, (15) 

Since the number  of ~k's is at most  t2,,, this proves the lemma. ] 



690 

Proof of Lemma 2.3. 

Madras  

Let u,,, = B 2 P ( m - k )  p V , , - k  for all m > k. Then 

lim u~,~" = 2 (16) 
m ~ o ~  

Now fix n/> 1 and let 

~lj = (U2Jin + k))l/2J(n + k) for j = 0 , 1  .... 

Equation (17) tells us that ~i is increasing in j, and its limit is 2 [by (16)], 
so ffj ~< 2 for every j. In particular we have ~o ~< 2, which says that 

( B2  PnPv,) I/t"+ k) <~ 2 

Since n is arbitrary, this proves the lemma. I 

The proof  of the main result for site animals uses the following result 
instead of Lemma 2.2. 

k e m m a  2.5.  Let s be a homogeneous d-dimensional lattice. Then 

sz,, + z >1 n - ~d- I)/dS2 ' for all n >/1 

R e m a r k .  The proof  is similar to that of Lemma 2.2, but not identi- 
cal. This is because there may be many bonds of ~ that join a site in 3 to 
a site in ~ r + x +  [ k ( x ) +  I ]  ei, and the definition of  site animal requires 
that they all be in ~. This prevents us from applying Lemma 2.4. 

P r o o f  o f  L e m m a  2.5. Fix n>~l,  fix i~{1  ..... d}, and fix two site 
animals 3 and a in ~, .  For  each site x of 3, let 

K ( x )  = max { k ~ R: some site of cr + x + kei is adjacent to some site of z } 

Then K ( x )  is a well-defined finite nonnegative number  [in fact, K(x)>1 1 

because a + x + ei contains x + ei, which is adjacent to x, which is in r] .  
Also observe that if x and x'  are two sites of 3 with p ro j i (x )=pro j ; (x ' ) ,  
then x + K ( x ) e i = x ' + K ( x ' ) e ~ .  Choose a site y ~ ( a + x + K ( x ) e ~ )  and a 

for all m > k, and so 

l / 2 m  1,1 I/m u2,,, ~>--m foral l  m > k  (17) 

by assumption (12). Also, by assumption (13), 

u2,, = B2P(2m - k )  p v2 . . . .  k 

>1 B 2 P ( 2 m  - 2k)  p v2~,,-k)+k 

>~ B22P(m -- k)  p [ B ( m  - k)  p v~,,_k] 

bl 2, 
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site z e z  such that y is adjacent to z (using lexicographic ordering to 
choose, if there is more than one possibility). Let 0 be the site animal con- 
sisting of the union of T, z + ei, y + ei, (a + x + [K(x)  + 2]  ej), together 
with all those bonds that have both endpoints in ~,. 

We claim that the ~, formed in the preceding paragraph is in ~9~ + 2. 
Most  of  this can be shown by an argument  just like the second paragraph 
of the proof  of Lemma 2.2; the only new part is to show that ~b has 2n + 2 
sites. By definition of K(x), we know that r and a + x + [K(x) + 2]  e~ have 
no sites in common,  so it only remains to check that neither of them con- 
tains z + ei or y + ei. First, notice that z + e~ is adjacent to a site of z 
(namely, z), and so the definition of K(x) tells us that z + e~ is not a site 
of a + x +  [ K ( x ) + 2 ]  ei. Second, z + e i  is adjacent to a site of a + x +  
[K(x) + 1] e~ (namely, y + ei), and so the definition of K(x) tells us that 
z + ei is not  a site of z. Therefore z + e~ is not in r u (a + x + [K(x) + 2]  e~). 
A very similar argument  shows that y+ei is not  in T w ( a + x +  
[K(x) + 2]  es) either. Thus we have shown that ~, is indeed in oo',,,+2. 

Let b be the bond ( y + e i ,  z + e , ) .  Then b is a bond of  O, but we need 
to show that ~b\b is a disconnected graph. Let 

G, = {x: x is a site of~} w {z + e;} 

G_,= { x : x i s  a site o f a + x +  [ K ( x ) + 2 ]  e~} u {y+e, .}  

We need to show that b is the only bond of the lattice that has one 
endpoint in G~ and the other in G 2. By the definition of K(x), we know 
that there is no bond with one endpoint in r and the other in a + x +  
[K(x) + 2]  e~. Also y + e~ is not adjacent to any site of ~, because y + e~ is 
a site of a + x + [K(x) + 1 ] e~. Finally, z + e, is not adjacent to any site of 
a + x + [K(x) + 2]  e;, because we know that z is not adjacent to any site 
of a + x + [ K ( x ) +  1 ] ei. [We  use the definition of K(x) in these last two 
sentences.] Therefore ~,\b is indeed a disconnected graph, and its two 
components have G~ and G2 as their respective sets of sites. 

Now suppose that we are given only the final site animal ~b. By 
Lemma 2.4, we can determine b, G~, and G,_ unambiguously (using the 
notation of the preceding paragraph).  Knowing b tells us z + e~ and y + ei, 
and their deletion from G~ and Gz, respectively, determines r and a + x + 
[K(x) + 2]  e;. It may not be possible to determine i (since z + e; may be 
connected to r by many bonds), but if we know the value of i, then we can 
determine pro3i(x), and hence or, as in the proof  of Lemma 2.2. The rest of 
the present proof  is very similar to the proof  of Lemma 2.2, except that 
being unable to determine i from ~ gives us the equation 

(number of ~b's obtained when i =  i ' )  = ~. I Proj,-,(r)] 
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for each i ' =  1 ..... d, and hence the analog of (15) gives 

1 a 
number of ~b's 1>- ~ (number of ~O's obtained when i = i ')  

di,=! 
n(d- 1 )]d s2 

Since the number of ~b's is at most s2,,§ 2, this proves the lemma. 

Proof of Theorem 1.1. As noted above, parts (i) and (ii) are 
immediate consequences of Lemmas 2.2 and 2.3 with k = 0 .  Part (iii) is a 
consequence of Lemmas 2.5 and 2.3 with k = 2. II 

3. SELF-AVOIDING POLYGONS 

In this section we shall only consider the square lattice Z 2. It may well 
be possible to extend the results to other lattices, but this would require 
(even more) unpleasant details. It may also be possible to apply the 
method to self-avoiding polygons in more than two dimensions, but in light 
of the known rigorous bound Oq ~ 1 for d>~ 3, (12) this hardly seems worth 
the effort, even though the result would be a termwise bound rather than 
a generating function bound. 

An n-step self-avoiding polygon (or n-step polygon) is a lattice animal 
having n sites which consists of a single cycle; in other words, each site of 
the animal is the endpoint of exactly two bonds in the animal. Let .~,, be 
the set of n-step polygons whose lexicographically smallest site is the origin. 
Then we define the number of n-step polygons (up to translation) to be 

q,, : =  I-~,,t (n >/1 ) 

Notice that q,, = 0 unless n is even and greater than 2. 
The proof of Theorem 1.2 is similar in structure to the proofs given in 

the previous section. We begin with a discussion of the concatenation of 
two polygons. 

A plaquette is a set of four bonds of Z 2 corresponding to a unit square 
of the lattice. Formally, for each x ~ Z  2, let P(x) be the set of bonds that 
have both endpoints in the set {x,x+e~,  X-t-e2, x+e~+e2}. Then the 
plaquettes are precisely the P(x)'s. 

Suppose that rc is an n-step polygon and p is an m-step polygon such 
that n and p have no sites in common. Suppose also that there are bonds 
b, and bp (belonging to n and p, respectively) which are both contained in 
the same plaquette P = P(x). (Note that b,  and bp must be parallel, since 

and p are disjoint.) Let r be the graph consisting of n\b,, p\bp, and the 
two bonds of P\{b , ,  bp} (see Fig. 2). Then ~O is an (n +m)-s tep  polygon. 
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e~ p 

Fig. 2. The action 

A 

of the symmetric difference 
n ~J p = ~b AP(x). 

operator: ~b = (n w p) AP(x) and 

We shall represent this operat ion using the "symmetr ic  difference" A as 
follows: 

r 

Next,  suppose that  ~ is an M-step polygon, and that  there is a 
plaquette P which contains exactly two bonds bj and b2 of ~, and that  
b~ and b2 do not have any common  endpoints.  Let ff be the graph 
consisting of ~b\{bl,  b,_} and the two bonds of P \ { b ~ ,  b2}. Then ff is a 
graph consisting of two components ,  each a self-avoiding polygon, with 
total number  of  steps equal to M. Again using the symmetric  difference 
notation, we represent this operat ion as follows: 

~ = $  A P  

Thus, if ~ is as above, then we have ~h = (~h A P )  AP.  

We can now state an analog of Lemma  2.4 for polygons. We omit  the 
proof, which is very similar to that  of Lemma  2.4. 

I . e m m a  3.1.  Let $ be a 2n-step polygon in Z 2. Then there exists at 
most one plaquette P such that  $ A P  has two components  which are each 
n-step polygons. 

Next we present the analog of Lemmas  2.2 and 2.5. 

L e m m a  3.2  (For  .s = Z2). There exists a constant  D such that 

q2,,+16>/Dnl/2q ] for all even n>~4 

ProoL  Fix an even n >t 4 and fix two polygons z and a in ~,,. Also 
fix a site x of  z. 

We would like to concatenate  r and a + x + kel  for some k, but there 
may not be a k and a plaquette P such that  these two polygons are disjoint 
and each contains a bond of P. Therefore, we shall modify the original 
polygons before concatenation.  To  do this, we need to ensure that there is 
space in which to make  the modifications. 



694 Madras 

For  each y 6 Z 2, let N(y) denote the three-point set {y, y + e2, y - e2}. 
For  each site x of 3, let 

K(x) = max{k 6 Z: there exists a y ~ Z 2 such that 

r n N ( y ) : / : ~  and ( a + x + k e l ) ~ N ( y ) ~ ; 2 ~ }  

Then K(x) is a well-defined finite nonnegative number  (since we can take 
y = x  when k = 0 ) .  Also observe that if x and x '  are two sites of r with 
proj l(x) = proj l(x'), then x + K(x) el = x' + K(x') el. Let Y = ( YI, I'2) be 
the lexicographically smallest site of Z 2 such that r n N ( Y ) r  and 
(a + x+  K(x) el) n N(Y) r ;2~. 

Notice that for any m we have ( a + x +  [K(x)+m] e~)c~N(Y+mel) 
:~ ~ .  Therefore the definition of K(x) tells us that 

zc~N(Y+mel)=fZJ for all m>~l (18) 

Also, since ( a + x +  [ K ( x ) + m ] e l ) c ~ N ( Y ) = f g  for all m~> 1, we have 

( a + x + K ( x )  e l ) c ~ N ( Y - m e l ) = f g  for all m~>l (19) 

The two assertions (18) and (19) tell us that we have some space near Y 
in which we can make some modifications to our polygons. (We will 
have to move them a bit farther apart  after the modifications before con- 
catenating them.) 

We now give a procedure for modifying T to get a new polygon rc with 
n + 8 steps (modifications to a will be done by the same procedure with a 
left-right reflection). First we define the following four polygons (see 
Fig. 3): fllo is the 10-step polygon consisting of the closed circuit from (0, 0) 
to (0, 1) to (3, 1) to (3, - 1 )  to (2, - 1 )  to (2, 0) to (0, 0); ill2 is the 12-step 
polygon consisting of the closed circuit from (0, 0) to (0, 1) to (4, 1) to 
( 4 , - 1 )  to ( 3 , - 1 )  to (3,0)  to (0,0);  and /~lo (respectively, /?12)is the 
reflection of fllo (respectively, ill2) through the line x2 = 0. 

0 i i 0 i  i 
Fig. 3. The four polygons fl,o, fl,2, /~,o, and fl12. The origin is labeled 0. 
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(Ia) 

Y 
? o o o 

(Ib) 
, o o o  _ 

. . . .  i F  o o o . . . .  

o o o e ~ - 

: 

Fig. 4. Cases Ia and lb. Empty sites are denoted by O;  sites that may or may not be empty 
are denoted by ?; dotted lines represent bonds that may be in the polygon. 

The procedure is given by the following case-by-case analysis: 

Case/. Y is a site of r. Then at least one of (Y, Y+e2) or 
(Y,  Y - e 2 )  must be in r. 

(Ia) (Y,  Y+e2) is a bond of z: Let it consist of z \ ( Y ,  Y+e2) 
together with ( f l lo+Y)\(Y,Y+e,_) (see Fig. 4). Notice that (18) 
guarantees that  none of the sites o f / 3 ; 0 +  Y are in r, except for Y and 
Y + e2; hence, rc is indeed a self-avoiding polygon. 

(Ib) (Y, Y--e,_) is a bond of r: Let r~ consist of  z\ (Y,  Y - e 2 )  
together with ( f i ;o+  Y)\(Y,  Y-e,_) (see Fig. 4). Again, (18) guarantees 
that rt is a self-avoiding polygon (we shall henceforth omit this comment) .  

Case II. Y is not a site of r, but Y +  e2 is. Since Y +  e2 + el is not in 
r either Eby (18)],  we deduce that (Y+e2,  Y + e 2 - e , )  must be a bond 
of r. Call this bond b'. (See Fig. 5.) 

(IIa)  Y - e t  is not in r: Let n consist of r \ b '  together with 
( f l ,o+ Y-e~)\b' (see Fig. 6). 

(II) 

b,l 
- "  - 0 0 0 

Y+e2 
? 

0 0 0 0 

Y 
? ? 

0 0 0 

Fig. 5. The general configuration for case II. Empty sites are denoted by �9 sites that may 
or may not be empty are denoted by ?. 

8 2 2 / 7 8 / 3 - 4 - 3  
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(Ila) 

(IIb) 
l f 

b" ] i ~ - - 

(Ilci) 

. . . . .  J . . . . .  1 

b. I oY _ ~I t 
o y _ r  

. . . . .  I .... . 1  
I 

( I l c i i ) - - ' ~  *Y ~ ~" 

b"I Y-'2 ~ i 

Fig. 6. Subcases of case II. Empty sites are denoted by �9 

(IIb)  Y-e l  is in r and the bond b":=(Y-e t ,  Y+e2-e t )  is 
also in r: Let n consist of r\{b',b",Y+e2-el} together with 
(fl12+ Y-el)\{b',b", Y+ez-el}.  

(IIc) Y - e  I is in r but the bond b " i s  not in r: Since Yis  not in r, 
we know that the bond b* := (Y-e~,  Y - e l - e 2 )  must be in z. There are 
now two final subcases to consider, according as to whether Y - e 2  is in z 
or  not. 

(IIci) Y-ez  is not in 3: Let n consist of ~\b* together with 
(]31o + Y-el)\b*. 

(Ilcii) Y-ez is in r: Since Y-e2+et is not in ~ [by (18)], we 
deduce that the bond b** := ( Y - e z - e t ,  Y-e,_) is in r. Therefore let n 
consist of r \{b* ,  b**, Y -  e z -  e~ } together with (fl~2 + Y -  e t ) \{b*,  b**, 
Y-e2--el}. 

Case Ill. Y is not a site of 3, but Y -  e2 is. This case may be handled 
exactly as in case II, but with reflection through x 2 = Y2, the horizontal 
line containing Y (so that fl is replaced by/~, and so on). 
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Next modify a + x + K ( x ) e t  using the obvious analog of the above 
procedure (in which Figs. 4-6  have been reflected through the vertical line 
x~ = Y~) to get an (n + 8)-step polygon p. Now polygons n and p will have 
some sites in common,  so we want to translate p by et just enough so that  
it no longer intersects n; then we will concatenate.  The next paragraph 
formalizes this operation.  

Let wj be the largest integer such that (w~, Y2) is a site of n, and 
let u~ be the smallest integer such that (ut,  Y2) is a site of p. Let p ' =  
p + (wt - u~ + 1 ) el ,  and let w = (w~, Y2). Then n and p '  are disjoint [recall 
the definition of K(x) ] ,  while (w, w + e 2 )  is a bond of n and ( w + e l ,  
w +  e I + e2)  is a bond of p'. So we can perform a concatenat ion at the 
plaquette P(w): let 

~ b = ( n u  p') aP(w)  

Then ~b e-~z,,+ t6. 
Now suppose that  ~ has been constructed using the above procedure. 

Can we determine the original r, a, and proj j (x)?  By L e m m a  3.1, we can 
reconstruct x and p'. Since there are 10 subcases of the above construction 
(from Ia through IIIcii), each n could have come from at most  10 different 
r's. Similarly, p '  could have come from at most  10 different polygons 
a + x + K ( x ) e ~ .  But each possible a + x + K ( x )  et determines the same 
value of proj l(x) ,  as in the proof  of Lemma  2.2. Therefore 

>_ 1 
number  of~k's ~" 1--~ ~,-~-z,o~ IProjl(r) l  

q,, 1 L = 100 2 ~ IProj,(r)l  (by symmetry  of Z 2) 

>_ q" 
.~. 100 ~ n ' / 2 = ~  [by (10)] 

_ nt/2q] 

100 

Since the number  of ~'s  is at most  q2,,+ 16, the iemma is proved (with 
D =  1/100). I 

Proof  of  Theorem 7.2. This follows immediately from Lemma  3.2 and 
Lemma 2.3 with v,,, = q,_,, for m ~> 2. (We obtain a value of C = 1002tq6/21/2 
for the constant  in the s tatement  of the theorem.) I 

4. PROOF OF THE INEQUALITY O~>v 

In this section we shall prove Theorem 1.3 for the case of trees on a 
homogeneous two-dimensional  lattice. The proofs for animals, site animals, 
and self-avoiding polygons are virtually identical. 
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First, we shall define our  terms. Let v be a tree (or animal, etc.). For  
each i = 1 ..... d, define 

Maxi(v)  := max{xi :  (xl ..... xa) is a site of v} 

Mini(v) := min{xi :  (xi .... xa) is a site of v } 

Next, define the mean span of v to be 

1 a 
MS(z) : = ~  ~ [ M a x ; ( v ) -  Mini(z)]  

i = 1  

Thus, the mean span of r is the average side length of the smallest box that 
contains r (and has sides parallel to the coordinate  axes). Finally, we define 
the average mean span for trees of n sites: 

1 
(MS) , ,  :=~,, ~ MS(z) (20) 

r E  <~-n 

The scaling assumpt ion for the average mean span is that  there exist 
constants B and v such that 

(MS) , ,  ~ Bn" as n ~ oo (21) 

Now,  observe that  for the lattice Z 2, the set Proj~(v) is equal to the set 
of integers in the interval [Min2(v), Max2(v)].  Therefore, IProjl(v)l = 
M a x 2 ( v ) - M i n 2 ( v ) +  I. In general, for a given two-dimensional  homo-  
geneous latice LP, there is a constant  K = K(LP) such that 

IProji(r)l > /K[Max3  _i(v) - -  Min3 _i(v)]  (22) 

for every tree v and i =  1, 2. Therefore we have 

2 

�89 ~ IProji(r)l  ~> K[MS(v)] for every tree v (23) 
i = 1  

Proo[ of Theorem 1.3. From the first two lines of (15), as well as 
(23) and (20), we find 

2 

t2,,>1 ~ ~ IProji(r)l  t,, 
r ~ , ~ ' ,  i =  I 

>1 2t,,K S~ MS(z) 
T ~ .aT n 

=2Kt~,(MS),, 

The theorem now follows from the scaling assumption (21) and Lemma 2.3. I 
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Remark. T h e  a r g u m e n t  of  th is  s ec t ion  b r e a k s  d o w n  for  d>~3,  

essent ia l ly  b e c a u s e  P r o j i ( r )  is a n  i r r e g u l a r  shape ,  qu i t e  un l ike  a ( d - 1 ) -  

d i m e n s i o n a l  rec tangle .  T h u s  the  a n a l o g  of  (22),  n a m e l y  [Proj~(-c)[~> 

K I - I j~ i  [ M a x j ( r ) -  M i n i ( r ) ] ,  is false. 

A C K N O W L E D G M E N T S  

Thi s  r e sea rch  was  s u p p o r t e d  in p a r t  by  a n  o p e r a t i n g  g r a n t  f r o m  the  

N a t u r a l  Sc iences  a n d  E n g i n e e r i n g  R e s e a r c h  C o u n c i l  of  C a n a d a .  
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